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REMARKS ON DE LA VALLEE POÜSSIN MEANS AND CONVEX 

CONFORMAL MAPS OF THE CIRCLE^' 

By 

G. Polya and I. J. Schoenberg 

INTRODUCTION 

The aims of the present remarks are similar to those pursued by L. Fejer 

in several papers in the early nineteen thirties and well described by the 

title of one of his papers:  Gestaltiiches über die Partiais ummen und ihre 

Mittelwerte bei der Fourierreihe uß^ der Potenz reihe. However, the means 

which we use to realize these aims are different. Fejer discovered the re- 

markable behavior of certain Cesaro means, especially that of the third Cesaro 

means for even or odd functions of certain simple basic shapes.  In what 

follows we show that the de la Vallee Poussin meens possess such shape-pre- 

serving properties to a much higher degree thankE to their variation-diminish- 

ing character. 

Before stating our results, we have to explain a few concepts. 

Variation-diminishing Transformations on the Circle. If a.,a,,,...,a  s. 1' 2'   ' n 

is a finite sequence of real numbers we shall denote by v(a)  or v(a )  the 

number of variations of sign in the terms of this sequence. By the number 

v (a) of cyclic variations of sign of our sequence we mean the following: 

If all a, = 0 we set v (a) = 0 .  If a, ^ 0 w« set a c i ^ 

-'  This paper was prepared partly under the sponsorship of the Office of 

Naval Research, and partly under the sponsorship of the United States Air 

Force, Office of Scientific research. Air Research and Development Command, 
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vc(a) = v(ai/
a
i+i>-'^

a
ri^ 

a
1^
a2^-^ai.i^ai) 

If we think of the a  as arranged clockwise in cyclic order, It becomes 

obvious that v (a) does not depend on tie particular non-vanishing term a. 

we start with. Notice that v (a) is always an even number. Let now f^'t) 

be a real-valued function of period 2jt . Let t ,tp,...,t  be such that 

(1) t < t < ... < tn < ^ + 2jt  . 

We may now define the number v (f) of cyclic variations of sign of f(t) by 

(2) vc(f) = sup vc(f(tv))  , 

the supremum being taken for all finite sequences (t ) subject to (l). Also 

v (f) , if finite, is even. Thus v (sin t) = 2, v (sin 2t) = 4, r ( jsin t|) ■ 0. 

We now describe what Is meant by a yariation diminishing transformation 

on the circle (Sec- flM). Such a transformation Is characterized by a non- 

negative weight-function, or kernel, fl(t) , of period 2n , of bounded vari- 

ation and normalized by the conditions 

n^jt 

(3) .. j n(t)dt = i, n(t) = | (n(t+o) + n(t-o)) 

Let f(t) be an arbitrary periodic function, with period 2K , real-valued 

and integrable (cf.Art. 1.2)j let us form its convolution transform 

- - - «. Mim» ^«Ifc...-«^^««^^,. .nt^i^A^iift^^ 
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w g(t) = ±- 1_ 
2n 

2« 

ß(t-T)f(T)dT 

We say that this transformation is variation diminishing provided that the 

inequality 

i (5) vc(g) <vc(f) 

holds for each f . We mean the same thing if we say that fl(t) is a 

variation diminishing kernel. 

V-means. One of our uims Is to show that the de la Vallee Poussin 

kernels 

(6) -»(" - |s}r (2 ~'I) 
2n 

the Fourier expansion of which has the simple form 

(6') 
,   * 1       T" /2n v_ii»t 

wn(t) = ^T    *— 
(n)       -n 

n 

l'[\)'    v" ■ H-2 I! 7   niu    T-2^ cos Vt     , ^n+v' (n-v);    (n+V): 

possess  the property of being variation diminishing for    n = 1,2,3,... 

For    a(t) = jj (t)    the transformation {k) becomes 

(7) 
i \-     i 

V*' = feir s 
2n 

(2  cos ^ )2nf(T)dT     , 
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and defines the de la Vail ee Po us sin means, or simply V-means, of the functiOv 

f(t) .  It Is easily verified (See [14] and [5], p. 15) that V (t) is a 

trigonometric polynomial of an order not exceeding n , which is readily ex 

pressed in terms of the Fourier coefficients of f(t) . Indeed, if 

(8) f(t)- }_    coe
iVt    ^ . cj 

00 

-n 

we obtain by convoluting    (61)    and    (8) 

(9) V (t) =^-   2_(2n) ce1Vt 

( n )      -n 

In terms of the real Fourier series    (  2c , « ft . - lb .) 

(10) 

we  find 

00 

f(t) ~   - a    4-2 (a    cos >)t + b    sin Vt) 
2    o    "—r v  V 

n 

(11) V (t) • 4 a    + -4r- Z C2?.)  (a    cos vt + b    sin \>t) 

^ n ' 

or 

n 

(12) Vn(t) • § ao +1_ ^   ^ (^ cos vt + bv sin vt) 



. 

■ 

f 

xMain Results.  Our principal result is the following 

THEOREM 1.  The inequalities 

(13) v (V ) <Z„(V ) < v (f) x c n' — cv n' — c 

hold for an arbitrary integrable function f(t) .  (We let Z (V ) denote 

the number of real zeros of V (t) within a period including multiplicities.) 

The first inequality v (V ) < Z (V ) , which is obvious, shows that 

Theorem 1 states considerably more than the variation-diminishing property 

of the kernel w (t) which amounts to v (V ) < v (f) . In Part I we give 
n c n — c 

two proofs of Theorem 1, both based on a theorem due to Sylvester ([12]). 

The first proof uses tue result of Sylvester's theorem, the second uses the 

method of one of its proofs. 

In Part II we discuss applications of the variation-diminishing property 

of V-means. Theorem 1 gives a useful lower bound for v (f) if a certain c 

number of Fourier coefficients of f(t) are known.  It is shown how this im- 

plies easily some results by Sturm, A. Hurvdtz, Polya and Wiener.  In Art. 5 

we study the simplest classes of discontinuous periodic functions; the be- 

havior of their V-means is described by Theorems 3 and 4. Fejer's Theorem 

III ([2], p. 86) has an analogue for V-means which is our Theorem 5 below. 

All this refers to red periodic functions. However, the shape-preserving 

properties of V-means appear to best advantage if applied to complex-valued 

periodic functions. 

Let us sLate here the main result of Art. 6 concerning convex maps of 

the circle. Let K denote the class of those "schlicht" power series 
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00 

/  a z** which map Izl < 1 onto some convex domain. Let 

oo 

(14) f(z)=/_<vzj  (^ = 1) 

n 

(15) V (z) — n v ' 
1 

o J=l 
(  )c z 

be the de la Vallee Poussin mean, or V-mean, of the power series (14). It is 

known that the partial sums of the series (14) need not belong to K . G. Szego 

has shown ([13]) that if F(z) e K then all partial sums of (14) are "schlicht" 

in the circle and map it  [z [ < lA onto convex domains, and that l/4 is here 

f-e largest constant. That the V-means belong to K is one part of the follow 

i ■ 

THEOREM 2. For 

(16) f(z) e K 

it is necessary and sufficient that 

(17) V (z) 6 K for n = 1,2,...  . 

The sufficiency part does not even assume the regalarity of (14) In the 

unit circle, as for any foxtnal power series (14) the assumptions (17) Imply 

that (14) converges and defines an element of K . 

'•^»B»,«.,-     , >.„»)*,!(!, 
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Additional Results. Parts I and II are followed ly  two Appendices which 

contain related iaaterlals, but are almost Independent of the main text. 

Appendix I brings out a certain analogy between approximations to two 

kinds of functions: periodic functions and functions defined in a finite 

Interval.  It will be shown that the shape-preserving properties of the V-means, 

which approximate functions of period 2n , are analogous to the shape- 

preserving properties of the so called Bernstein polynomials which approximate 

functions defined in [0,1] . For the definition of these polynomials see 

Art. 7 where also their variation-diminishing property (Theorem 6) is stated 

and proved. 

Appendix II is devoted to a conjecture on power series which represent 

a conformal one-one mapping of the unit circle onto a convex domain. The 

conjecture is that the Hadamard composition, or convolution, of two such 

power series is again a power series of the same kind (See Art. 9)- We do 

not know whether this conjecture is true or not (it seemt to us more likely 

that it Is true) but at any rate, in view of the partial results which we 

have obtained (Art. 10 and 11), the problem to t   ^ve or to disprove the con- 

jecture seems to us worth while. 



PAPT I 

THE DE LA VALLEE POUSSIN SUMMATION METHOD IS 

VARIATION-DIMINISHING 

1.1 A theorem of Sylvester.  In the course of his work on Newton's rule of 

signs J. J. Sylvester discovered a remarkable theorem concerning the real 

zeros of polynomials of the form 

m 

v=l V 

(See [12],  p. kOÖ,   [?] and also [9], vol. 2, Problem 79, p. 50). In Sylves- 

ter's theorem q may assume any positive integraJ. value, a fact which is im- 

portant for its proof which proceeds by induction in q . We need Sylvester's 

result only for even q = 2n and state it as 

LEMMA 1. Let 

§!  < 52  < ...   < ^  ,     (m >2)     , 

be given reals  and consider the polynomial 

m 
2n P(x) ^   cJx-t   )'' 

v=l 

(with ^    c^ o    f^ ^    ^   )y ^^ ^ ^^ ^ ^ ^^ identically. 

Then 

Z(P;   -00   <t <QO)  <v(c1,c2,...,cm,c;L)       , 
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where the left side denotes the number of real zeros of P(x)  while the 

right side is the number of variations of sign in the sequence displayed. 

The significance for us of Sylvester's result is that it easily yields 

the following 

LEMMA 2. Let 

(1.1) -« < ^ < T < ... < T^ < n ,  (m > 2)  , 

be given reals and consider the trigonometric polynomial 

m 
^T t-T   Or. 

(1.2) T(t) = 2_ cv(hin -^ )^n , 
\/=l 

(for real c.^, 4  0 for all v )   , which we asrume not to vanish identically. 

Then 

Z(T-, - it < t < «) < v(c1,c2,...,cm,c1) 

We introduce the new variable 

(1.3) x = tan |   (- n < t < n) 

whose ran^e is    - oo  < x < oo   .    The images of the    T      we denote by 

T 

^   = tanT 
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and these give rise to the identities 

t-Tv 2    (x-^)2 

(sin -5— } =  ^ 5- ,  (v=l,...,m)  , 
2      (l+x

2)(l+g;) 

which are easily verified. Thus (1.2) may be expressed in terms of x by 

(1+x )  v=l 

where the 7, are positive and so Lemma 2 immediately follows from Sylves- 

ter's Lemma 1. 

We now recast our result in the following more useful form: 

LEMMA 3.    Let    T ,T  ,,..,T      (m > 2)    be    m   points in counter-clocX^iae 

order on the circle such that    T      should not overtake or even reach    T     . 

We may express  these requirements by assuming that 

(1.4) T,   < T„ < ...  < T    < T,   + 2n ' 12ml 

Let 

m 

(1.5) T (t) =   ^_ c u, (t-x   )   ;     (T(t) i 0)     , 
^=1 

where at least two among the c   do not vanish. Then 

n 
■   ■ 
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(1.6) ZjT  ) < v (c . )  . 
cv n — c    v ' 

Indeed, by omitting vanishing terms In (1.5) we may assume that c  ^ 0 

for all v   -    Moreover, a change of variable by t = t' + (n/2)    will evi- 

dently not alter the left hand side of (1.6). This implies that in our 

statement (1.6) we may replace T (t) by the polynomial T(t) defined by 

(1.2). By a second appropriate transformation t = t' + c we may replace 

the conditions (1.4) by the more restrictive inequalities (l.l), at the same 

time making sure that T(n) ^ 0 . But then 

and Lemma 3 is established. 

1.2. On the number of variations of a function. The reader may interpret 

the term "integrable" either according to the definition of Riemann or to 

that of Lebesgue, or to any other definition that involves the familiar 

standard properties of the integral. We emphasize the following property: 

If f(t) and g(t) are integrable and f(t) >0 in the Interval I , then 

f dt = 0 

implies 

f g dt = 0 



-12. 

We consider now a real-valued periodic function f(t) with the period 

2« ,  we assume that it is integrable in the interval (0,2-,t) and that v (f), 

as defined in the Introduction, is finite. We consider t (mod. 2«), that 

is, we consider t as attached to a point on the periphery of the unit 

circle. If v (f) = 2k , we can, as easily seen, divide the circumference 

of the unit circle into 2k consecutive arcs 

(1.7) 12'*°' 2k 

such that 

(1.8) (-l)^"1 f(t) > 0 in I 

f*"   v= 1,2,...,2k ; the arcs (1.7) may be open, or closed, or open from one 

s. ^o and closed from the other, some of them may even reduce to a single 

point. Now, we normft"! Izt  f(t) , that is, we change f(t) (if necessary) as 

follows: we set f(t) = 0 in all points of any interval (1.7) along which 

Jf dt vanishes; especially, if an Interval listed under (1.7) consists in 

just one point, we set f(t) = 0 la that point. This normalization cannot 

increase (but may decrease)  y (f) and leaves unchanged the V-means of f 

(cf. the initial remark of this section). Therefore, it will be sufficient 

to prove Theorem 1 for normalized functions.  If, however, v (f) = 2k for 

a normalized function f(t) , the intervals ('-.7), constructed as above, 

have the property 
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(1.8') y-1 
(-1) '   f(t)dt >0 for   = 1,2,... 2k . 

The foregoing remarks will be useful in the following proof of Theorem 

1. Yet we do not need them in establishing the weaker Inequality 

(l-9) Vc(Vn)<v;(f) 

for a Riemann-lntegrabJ.e function f 

Indeed, let us consider the integral 

yt) 1_ 
2n 

2n 

wn(t-T)f(T)dT 

and its approximating sums 

a 

Lemma 3 and definition (2) imply 

^\J <\W^) <\W 

or 

SlnCe Vn.(t)-<Vt) ^^    t - as m^0D , the last Inequality 

Wm*ammmmmmmm* 
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evldently implies (1.9)« An "approximation argument" extending (1.9) to a 

more comprehensive class of functions is easy, but hardly deserves to be 

presented here. 

1.3 A first proof of Theorem 1. The first inequality (13) is immediate 

and so the essential assertion of Theorem 1 consists in the inequality 

(1.10) z(y) < v (f) c n — c 

If v (f) > 2n there is nothing to prove; also if v (f) = 0 for then 

V (t) clearly can not vanish. Let us assume, then, that f(t) is "normalized" 

according to section 2, and that 

0 < v (f) = 2k < 2n , 

and let us divide t.hp «nit •"Ircumfercucc into the 2k    cuuueclive arcs (1.7) 

which satisfy the conditions (1.8) and (1.8'). We may then write the Fourier 

coefficients of f(t) In the form 

a = — 
12jt 

f(t)dt = 
s=l 2s-l 

|f(t)|dt -Li f  |f(t)|dt 
8=1  Jl2s 

(1.11) a - i 
2* k k 

f(t)cos vt  dt=/__-   |f(t)|cos v/t dt-/_- 
1 n ^1 2s-l 

! *u 
|f(t)|cos vt dt, 

L2s 

2n 

o 

K   n a  p 

f(t)sin vt dt=//_-   |f(t)|sin vt dt-}_~      |f(t)|sin vt dt. 
1 n ^I 1 " ^T 28-1 ^   i2s 

(v=l,...,nj 0 < t < 2n) 

■ 
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Consider in the 2n-dimensional 

parametric form by 
space E2n    the closed curve r defined in 

cos vt , sin vt  (^1,...^; 0<t <t<2n)     . 

To the division (l.7) of the circumfe 

a division of r into 
rence into the arcs I 

p ,  corresponds 
arcs 

(1.12) ri>rp,--'fr, 
2k 

where we  think of the arc r as carrying the positive mas; 

(1.13) 1 
ir f(t)Jdt 

This 

are 

maSS has a centroid the coordinat 
es of which, multiplied by (1.13), 

(1.14) 1 
it |f(t)|cos i;t dt, i 

|f(t)|sin -jt  dt  {V =  1 j • •. > n) 

By a well known theorem of Caratheodary the mass (1.13) of r 

concentrated in a finite number of 

same centroid (l.l4). Thl 

fi    may be 

points along r,  so ns to produce the 

^s we do for each of the arcs (1.12). Arrangl 
all these points in c^,, or^ ^ r ^ ^ ^ 

ng 
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^^>^2,'''> ■ 

and correspond! ;^ coefficients 

Cl'C2'---'Cm 

where    (-1)        cJ  > 0    when    T^    belongs to    1^      .    In view of the relations 

(1.11) we obtain 

m m 

(1.15) =   1 V m 
ao "    f- ^ 1     >    %  =    Zl.  c cos ^T      ,    b,  =   }__ c.sin UT 

J=l    ^ 1=1    <J J '        Tl    J J     ' 

(1.16) 
vc(cJ) = 2k= vc(f) 

We consider now the trigonometric polynomial 

(1.17) 

m 

F(t)  = i   )        c.cü  (t-Tj 
J=l 

and claim that 

(1.18) F(t) = Vn(t) 

Indeed, by (6) 

'  ' ' 
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m 

F(t)   =   |     £   Cj   ^(t.Tj) 

> ,1        > nJ nl ,,       v. 

= Y cj {| + /__  ^yr (u^yr(cos vt cos yTj+ s:Ln vt sin VTj)h 

and interchanging the order of summations, by (i..l5) 

n 

F(t) = ^ a +2  7—^TT 7—Vr (a., cos vt ■♦- b, sin vt) v '  2 o ^^  (n-v): (n+u): v ^        ^ 

which is identical with V (t) by (12). Finally, by (l.l?), (l.l8), (l.l6) 

and Lemma 3 

Z (V ) = Z (F) < v (cj = v (f) , or  rr   cv ' — cv y        cv ' ' 

which proves the inequality (1.8). 

2   A Second Proof of Theorem 1. The foregoing proof is based on Sylvester's 

result which we stated as Lemma 1. We shall now prove Theorem 1 without 

assuming the krowledge of this result. 
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We transform (7) by changing the variables. Setting 

x = tan - ,  5 = -cot -  , 

we obtain from (7) hy straightforward computation (by steps  similar to those 

exhibited following (1.3))  that 

2  n 

(2.1) (1+x )    V (2 arc tan x) = 

nOO 

-OD 

(x l)2n    (n'fz211    f(-2 arc cot gj 
(X ^ {2n}U d^jn+l dg 

This relation Is contained in the more general 

„CO 

(2.2) 
\m. 

p(x) = |  (x-6) A(Od5 

-00 

.00 
VM 

where m is a positive integer and the integral      | A(|)d| is absolutely 
y -oo 

convergent; P(x) is by the structure of the formula (2.2) a polynomial of 

degree not higher than m . 

We consider the following quantities connected with (2.2): 

N the number of real zeros of P(x) , counted with multiplicity; 

v the number of variations of sign of A(&) in the open interval 

-oo < | < oo ; 

sg A(oo) is the constant sign, different from 0 }  that A(|) possesses 

whenever it is different froik 0 in a suitably chosen interval, u; < S < co ; 

 +- 
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we assume here that A(|) is normalized in the sense of Art. 1.2; 

sg A(-oo) is similarly defined; 

T) = ^|sg A(oo)-sg(-l)mA(-oo)| 

so that T is either 0 or 1 ; 

V = v + T) 

In fitting (2.1) into the more general pattern (2.2),  we can assume 

without loss of generality (by rotating the circle through an appropriate 

angle) that V (n) ^ 0 , that f(t) is normalized in the sense of Art. 1.2, 

and that 0 is an interior point of one of the intervals of constant sign 

considered there, so located that, for some positive e , f(t) takes some 

non-vanishing values in both intervals  -e < t < o and 0 < t < e 

Under these circumstances, in the particular case (2.1), 

m = 2n , 

A(-oo ) = A(ao ) , 

r, = 0 , 

V = v = vc,'f) , 

N = Z (V )  , 
c n  ' 

and GO Theorem I is an immediate consequence of 

LEMMA k.    N < V . 

We need several steps to prove Lemma h. 

(a) There are some particular cases in which Lemma, h  is obvious. 

If P(x) vanishes identically there is nothing to prove since in this 

case, by definition, N = 0 . 

■ 
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If V > m there is nothing to prove since, of course, N < m . 

If v = 0 lind m is even (so that V m r\ m 0) P(x) vill have for all 

real x the constant sign of A(g) and so N = 0 as it should be according 

to Lemma k. 

If v = 0 and m is odd (so that V » TJ » l) m-1 is even and so 

,00 

P'(x) =/  (x-O^VOdl 
/-00 

has a constant sign for all x ,  by what we have Just said. Therefore, P(x) 

is monotone and N = 1 which agrees with Lemma k. 

And so we may and shall assume in the sequel that 

(2.3) 1 < V < V <ffl-l . 

(b) Let c be a point of change of sign for A(|) ;  that is, c is 

the common endpoint of two contiguous intervals in each of which A(5) keeps 

a constant sign, yet the two signs (cf. Art. 1.2) considered are opposite. 

The number of such points is v and we ha/e assumed (2.3). 

We assert that at least one of the m-1 quantities 

P'("),P,,(c),...,P(m'1)(c) 

is different from 0 . If this assertion were wrong; the integral 

:    . ■-- , 
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,iOO 

(j.c/A(e)di 
-oo 

would vanish for /* ■ m-l,... 2,1    and, as a linear combination of three 

integrals, 

(2.4) 

pOO 

(£-c)Q(S)A(5)ä£ 

-00 

vould vanish for any polynomial Q(§) of degree not exceeding m-2 . Yet 

this is certainly false if 

(2-5) Q(0 - (x-c1)(x-c2) ... (x-c^) 

where c,c ,c , ...,c    are all the points of change of sign of A(5) > 

observe (2.3) in computing the degree of Q(S) • In fact, with (2.5) the 

integrand in (2.4) has a constant sign and so the integral (2.4) cannot 

vanish. 

We have seen, by the way, that under the condition (2.3) P(x) cannot 

identically vanish. 

(c) Set 

(2,6) G(x) - P(x)(x-c) 
-m 

. .^- . 
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(2.7) P*(x) = (x-c)m+1(G'(x) 

= (x-c)P'(x) - mP(x) 

oo 

(*-l)a'lA*ii)dl 
=CD 

where 

(2.8) A*(S) = Bi(S-c)A(g) 

and 

let N*,m*,v*,Tj*,v* be Just so connected with P*(x) and A*(|) as N;m, 

v,n and V are with P(x) and A(|) . Obviously 

(2.9) 

m* = 

v* = 

sg A*( co ) = 

sg A*( -oo ) = 

m-1 

v-1 

sg A(oo) 

-sg A(-oo) 

and so 

1  . 
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Combining this with (2.9), we obtain 

(2.10) V* = V - 1 

We intend to prove Lemma k  by mathematical induction with respect to V . 

In fact, we have already proved Lemma k  in the particular case V = 0 under 

(a) . We therefore assume V > 1 , cf. (2,3), and that Lemma k  has been proved 

for the preceeding value (2.10), and so we take for granted that 

(2.11) N* < V* 

(d) Let k denote the number of those zeros of P(x) that coincide 

with the point c ; obviously k > 0 , and, by (b). 

(2.12) k < m - 1 

Let k* denote the number of those zeros of P*(x)  that coincide with c 

We set 

(2.13) N = k + i ,  N* = k* + /* j 

i and t*  ,  defined by (2.13), 

enumerate those zeros of P(x) and P*(x) , respectively, that fall into one 

or the other of the two open intervals -oo < x < c and c < x < oo . 
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We note the critical term of the expansion of P{x)    around the point 

x = c , 

-, ,   P^i    C)(x-C)k _(k),  v  / A P(x) =  ^y^i ^- + ...  , Pv y(c) ^ 0 

By (2.6) and (2.12), G(x) has a pole at the point c and (2.7) yields 

P.« = i^sl^LsÄ^l + . 

We infer that P*(x) has just as many zeros at the point c as P(x) : 

(2..4) k* = k . 

By the way, we have seen that P*(x) does not vanish identically. 

(e) It remains to consider the real zeros different from c j P(x) 

or, which is the same, G(x) has / such zeros, and P*(x) or, which is 

the same, G^x) has i* such zeros. These zeros are distributed some- 

how in the two open intervals,  -oo < x < c and c < x < oo . 

By the theorem of Rolle, in each of these intervals at most one zero 

can be lost in the passage from G(x) to G^x) , so that 

(2.15) i* > i - 2 ; 

this information is correct, but insufficient for our purpose. We shall 
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obtain, however, additional Information by using the following remark (cf.[9J, 

vol. 2,  p. 39, problem Ik). 

No zero  can be lost In the passage from G(x) to G'(x.)    in the interval 

(-oo,c) if 

(2.16) sg G(-oo) = sg G'(-oo) 

and no zero can be lost in this passage in tho interval (c^oo) if 

(2.17) sg G(oo) = - sg G'Coo)  . 

The signs mentioned in (2.l6) and (2.17) refer to a certain neighborhood 

of »oo or Qo and, as G(x) has only a finite number of zeros, they are 

certainly different from 0 . 

(f) We know, cf. (b), that the polynomial P(x) does not vanish iden- 

tically. We set 

(2.18) P(x) = b .xm + b.x111"1 + ... + b v '   o    1 m 

and distinguish two cases. 

Case I. If b = 0 , there is an s such that b =bn=...=b ,=0, 
         o    ' o   1        s-1    ' 

b ^ 0 and so we easily find the Initial terms in the expansions around oo: 

b 
G(x) = -| + ...   , 

x 

G'U)    s 
G(x) 
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In this case, both conditions (,2.16) and (2.1?) we are satisfied, and, by the 

final remark under (e), we can improve (2.15) to 

(2.19) £* > I 

Case II. Now 

(2.20) b = 
o 

00 

A(|)dS ^ 0 , 

u-oo 

and  the expansions around oo begin so: 

(2.21) 
mc b + b, 

G(x) = b + i + ... v '   o      x 

(2.22) G'(x) = - 
mc b + b, 

o   1 

where 

(2.23) 

pOO 

mc b + b., = m 
o   1 

A(0(c-|)d5  . 

-00 

We again distinguish two cases. 

Subcase 11,1. If v = 1 , c is the only point of change of eign of 

A(|) , the integrand in (2.23) is of constant sign, and so the Integral is 

different from 0 . 



-27- 

Subcase 11,2. If v > 2 , the Integral (2.23) could vanish.  Yet In 

this case A(5) has at least another point of change of sign, c, ,  and I 

say that (g 23) and 

/OO 

in A(0(v5)dS 
-oo 

cannot vanish simultaneously: in fact, their difference is 

nOO 

mi^-c) A(5)d{ = m(c1-c)bo ^ 0 

-oo 

by our present assumption (2.20).  Therefore, assuming that the point of change 

was properly selected from the start, (which boils down to a proper choice of 

notation), we may assume that (2.23) is different from 0 , aJ.so in the present 

subcase. 

Finally, in both subcases, we conclude from (2.21) and (2.22) 

lim 
X -» + 00 

2,-,, / \    mc b + b. x G (x)       o   1 
^ 0 

and we see thai Just one of the two conditions (2.l6) and (2.17) is fulfilled. 

Therefore, by the final remark under (e), we can improve (2.15) to 

(2.24) £*>£-! 

■ 
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Thu., even in the less favorable of the two cases I and II, ve  have 

(2.24). Combining this with (2.13) and (2.14), ve obtain 

N* > N - 1 

and hence and from (2.10) and (2.11) ve obtain 

V-l = v*>N*>N-l 

or V > N , which is the desired conclusion of Lemma 4. 

The foregoing somewhat involved proof becomes more understandable if 

it is compared with the proof for Lemma 1 given in [7] or in [9], vol. 2,  p. 50, 

problem 79. 

- 



PART II 

SOME APPLICATIONS OF THE VARIATION DIMINISHING 

PROPERTT OF V-MEANS 

3.  A theorem of Ch. Sturm and A. Hurwltz. Let f(t) be a real-valued, 

integrable, periodic function of period 2n  .    Let 

00 

(3.1) f(t) = - a    +/       (a cos ^t + b sin i*t) 
2     O     L—r   v ^ 

v=l 

be its Fourier expansion. Suppose that the partial sum of the n   order 

_ n 

(3-2) S (t) - I a +2_(aw cos ^ + \  sin v*) 
n       d.      Q         r   v V 

v =1 

is known. What can we say about the number v (f) of changes of sign of 

f(t) in a period? An answer is immediate:  Knowing (3.2), we can compute 

(11), the n   V-mean of f(t) , and we must have 

(3.3) vc(f) >Zc(Vn) 

by Theorem 1. 

The infonnation provided by this inequality is strongest when the right 

hand side attains its largest value 2n . There is a simple sufficient con- 

dition for this eventuality which we record as 

COROLLARY 1.  If 

■ 
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,  2      .2.1/2      /2nUa2      , P     .1/2      /2nu-   2      ,2     vl/2 

(3-4) 
, 2n w   2      ,2.1/2      l^n. .     , 

then every function f(t) having (3.2) as the n   partial sum of Its 

Fourier series, must change sign within a period at least 2n times. 

Indeed, it Is clear by (3^) that the last term of the expression (11) 

for V (t) so predominates that V (t) has 2n simple zeros, hence 

Z (V ) = 2n . The statement now follows from (3.3). 

We obtain a classical result ([3]> PP« 572-57^) as a very special case: 

COROLLARY 2. If a * a. *» b, « ... « a , * b , = 0, a2 + b2 > 0 . —      oil n-1        n-1        '    n        n ' 

then    v (f)  > 2n  .        cv   ' — 
2        2 The following is an equivalent formulation:    If    a    + b    > 0    then 

(3.5) vc(f(t)  - Sn_1(t)) >2n    . 

This second formulation is especially interesting and intuitive because it 

shown that the graph of the partial sum S  (t) must cross the graph of 

f(t) at least 2n times. Hurwitz's proof of Corollary 2 is direct and 

elementary. However, his classical argument is no longer available to estab- 

lish other special cases such as the following: 

If 
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f(t) = - + /  cos nt -♦-/    (a . cos vt + b sin vt) 
ed       —r  ;  u * v=l        v=n+l 

then 
—— 

v (f) > 2n cv ' — 

For in this case V (t) « ^r OJ (t) , hence Z (V ) = 2n so that (3.3) implies n    d    n en v^^/x- 

the result. Such particular examples are easily constructed and we see no other 

way of proving them except by the fundamental inequality (3«3). 

4.  The simplest Polya-Wiener result concerning high order derivatives of 

periodic functions. Let f(t) be a real function of period 2n    which is 

Infinitely often differentlable. Let ua consider its zeros and also the zeros 

of its successive derivatives. Counting multiplicities as usual we set 

N(k) = z^fW)   )      (k. 0^... ) ; 

and assume all chese numbers to be finite. A familiar application of Rolle's 

theorem shows that 

(1K1) N'^NW-C. .<N<k)<N(k+1'< 

Can this sequence remain bounded? This is surely the case if f(t)  is a 

trigonometric polynomial.  The truth of the converse is stated by the following 

proposition due to Pölya and Wiener ([18]): 
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COROLLARY 3- If the sequence (4.1) is bounded and 

(4.2) liai N^k^ = 2m  , 

than f(t) i£ a trigonometric polynomial of exact order m . 

Indeed, let (3-1) he the Fourier series of f(t) .  It is known to 

(k) converge under our assumptions and the expansion of fv ^(t) is obtained 

by formal differentiations of the expansion of f(t) . Let us assume 

that for a certain n 

(4.3) 
2   2 

a + t> > 0 n   n 

(k) It is clear then from the form of the Fourier series for fv y(t) that 

this series will satlefy the Inequality (3-4) of Corollary 1, provided 

only that k is sufficiently large, k > K say. But then by Corollary 1 

N(k) ^ v ^(k)^ > 2n ^ (if k >K)  t 

Thus (4.2) and (4.3) imply that 

n < m , 

and f(t) must reduce to a trigonometric polynomial of order q < m . On 

(k) the other hand, if f(t) is such a polynomial, Nv ' < 2q which implies 

2m < 2q or m < q , hence q = m and the theorem is established. 

■*..   . • 
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5-  The graphic behavior of V-means.  We now wish to  discuss the shape- 

preserving properties of the V-means which are implicitly contained in the 

fundamental inequality 

(5.1) zc(vn) < vc(f) . 

It shows that V (t) can't oscillate about zero more frequently than f(t) 

does. But there is nothing peculiar about the level zero. Indeed, if 7 is 

any re&l,  then f(t) = 7 implies V (t) = 7 . Thus we may replace in (5'1) 

f and V  by f - 7 and V - 7  ,  respectively, obtaining the inequality 

(5.2) Z^-7) <vc(f-7)  . 

A second remark Is based on the obvious known fa^t (See  [5], p. 191) 

that if    f(t)    is absolutely coalliiuuas then    V"(t)    is the V-mean of    f'Ct) 

But then (5.1) immediately gives 

(5.3) Z (V)  < v (f)       . cx  n    —    c 

This operation may naturally be repeated giving 

(5.M z (v(k)) <v (£'(k)) , 
c n   — c    '  ' 

which Is valid depending on how many derivatives f(t) possesses. For 

instance, if 

' ■■  ' " 
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f(t.) f C" 

then the graph of V (t) can't have more maxima, minima or pointa^öf inflex- 

ion than the corresponding numbers for the graph of f(t) . 

It is desirable, however, to discuss this phenomenon for functions of a 

lower degree of smoothness and the following developments aim to do that. We 

consider the class D  of real periodic functions f(t) , of bounded variation, 

normalized by 2f(t) = f(t+0) + f(t-O) . A subclass of Do is the class ^ 

of functions satisfying the classical Dlrichlet conditions. By f(t) e D 

we mean that the circle can be dissected Into a finite number of consecutive 

open arcs in each of which f(t) is monotone in the wide sense. 

With each f(t) e D,  we associate an even non-negative integer S(f) , 

called the number of sense-reversals of f(t) and defined as follows: 

Gontiider, for a given natural number k , the periodic sequence of ordinates 

(5-5) f, = f(£p) - f(vh) (h = 2*710 

of period k , and the likewise periodic sequence of differences 

Af, . tiS^il)  -  f(^)  , 

= 0,1,2,...,n-l     .     We now define    S(f)    by 

(5-6) S(f) =    lim   v (Afi;) = max v (Afo) 
k -> oo   ' k 

: t • •* 
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The reader is urged to supply proof for the statements implied in this defini- 

tion; it depends on an analysis of the finitely many points which liave no 

neighborhood in which f(t) is monotone.  If in addition to f(t) e n  we 

assume that f(t) e C'  then evidently 

S(f) - vc(f
i)  . 

Our substitute for (5.3) for the class D1  is given by the following 

THEOREM 3. If f(t) e D  then 

(5.7) vc(v;) = s(vn) <S(f) . 

The proof is very simple. Besides the V-mean 

^2« 
Vn(t) = h  1 %(t-T)f(T)dT 

we consider the approximating sums 

Vn,k(t) = I V ^(t"Vh)^ '  (h=2rt/k)  * 

Replacing t by t+h we obtain 

V , (t+h) » -/  u, (t-^h)f . 
n,k      k v    nv   ' v+1 

,...■■■ 
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and  therefore 

(5.8) AV/h =  (V )k(t+h)  - Vn)k(t))/h . i^_u11(t-vh)Af) 

By Lemma  3 ; in view of (5.7),  we obtain 

vc(AVn,k//h) - Vc(Af ^ 5s(f) 

or 

V
C(
AVn,k/h)^S(f) 

Because the difference quotient (5'8) converges to V^t) , as k -» oo , for 

all t , the last inequality implies (5.7)' 

There is a similar significant substitute of (5.4) for k = 2 . In 

order to formulate it we define a class of functions f(L) which we denote 

by D? : By f(t) e Dp we mean that the circle can be dissected into a fin- 

ite number of consecutive open arcs in each of which f(t) is cor "nuous and 

convex, or concave, or linear. It is clear that 

| 

D2C D1  . 

With each f(t) e Dp we associate an even non-negative integer T(f) , 

called the number of turn-reversals of f(t) and defined as follows: Besides 

the periodic sequence of second differences 
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B2f - f , - 2f + f . 
U      v+1       iJ y -1 

and define T(f) by 

(5.9) T(f) = lim  Vc(ö%) = sup vc(5 fv)  . 

Again a proof of the equality of the last two expressions requires the consid- 

eration of the points (finite In numher) which have no neighborhood In which 

f(t) Is convex, or concave. If In addition to f(t) e D  we assume that 

f(t) e C" then evidently 

T(f) = vc(f")  . 

A substitute of (5.4) for k = 2 Is given by 

THEOREM k.    If f(t) e D0 then 

(5.10) vc(v;) = T(Vri) <T(f)  . 

The proof is so very similar to the proof of Theorem 3 that it suffices 

to indicate the main points. In place of (5«8) we now start from the second 

order difference quotient 

^n,^2 '  (Vn,k(t+h) " 2Vn,K(t) + ^^^^ 

T-r) U (t-vh)B2f 
2nh '—— nv   J      ■» 
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uid observe that on the one hand it. converges to V"(t) , on the other hand 

by Lemma 3 and (5.9) 

■'c^X.^ < T(f' 

This last inequality implies (5»10) on letting k -♦ oo . 

The following remarkc concerning the öimpleHt elements of D.  and D- 

are called for:  1.  If f(t) = const,  then clearly S(f) = 0 and T(f) = 0 

Conversely, either of these relations is easily seen to Imply that f(t) = 

const. 2. The first non-trivial case is 

(5.11) S(f) = 2  . 

Functions f(t) satisfying (5-11) a.^ In a way the simplest non-conctant 

periodic functions and may aptly be called periodically monotone. Likewise 

functions with 

(5.12) T(f) = 2 

may be called periodically convex. 

It Is easily shown that (5-12) Implies (5.11). That these new terms are 

appropriate Is also shown by the following two statements: 

i.  If the periodic function f(t)  is monotone (non-constant) In 

-n < t < it then S(f) = 2, i.e., f(t) is periodically monotone „ 

• 
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2. If the periodic function f(t) is convex or concave (nOB-eoiuitant) 

in -n < t < n then T(f) ■ 2, i.e., f(t) is periodically convex. 

Observe that the distinction between "increasing" and "decreasing" as 

well as between "convex" and "concave", drops out for periodic functions. 

We conclude our short excursus into "descriptive function theory" with a 

few examples: 

S(sin t) = T(sln t) = 2 . 

S(|sin t|) ■ T( |sln t\) = k    . 

If f(t) = sin t -t- 1 in (-jt,0) arid f(t) = sin t in (0,ä) then 

S(f) = T(f) = 6 . 

If    f(t) =  sin t+t    in    0<t<2jt,   then 

S(f) = 2,  T(f) = k     . 

From these examples we see that 

(5.13) S(f) <T(f) 

and this Inequality is generally true. We see this if we observe that for a 

periodic sequence (5'5) we always have 
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v (f ) < v (Af J < v (9Pf )  . 

In view of (5<-6), (f5.9) and the corresponding relations 

we conclude that 

v (f) = lim v (f ) = max v (f ,)   . 
k -♦ oo        1c 

(5-14) vc(f) <S(f) <T(f) . 

It is of some interest to show that the remarkable properties of the 

third Cesaro means established by L. Fejer in his Theorems 1, 2  and 3 

([2], p. 82 and p., 86) are also enjoyed by the de la Vallee Poussin means 

V (t) , Thus Fe.jer's work suggests the following 

THEOREM 5.  If f(t) is an odd periodic function which is positive and 

concave in the range 0 < t < rr , then 

(5-15)        0<V(t)<f(t)   if  0 < t < jt   (n > 1) 

Moreover^ the function V (t) i_s also concave in 0 < t < jt . 

The last statement and the first inequality (5.15) a^e  easily proved. 

Indeed, it ie clear that 

(5.16) v (f) = S(fj = T(f) = 2 

■ 
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Observe also that    V (t) ^ 0    If    n > 1 , for    V (t) » 0    would imply   D (t) - 0 , 

hence also    v (t) > 2n + 2 > k    (by Corollary 2) vhlch contradicts (5.16). By 

Theorejn 1 and (5.16) surely 

(5.17) Zc(Vn) - 2 

Since V (t) is a sine polynomial it vanishes at 0 and it . By (5.17) 

these zeros are simple and the only zeros of V (t) . Also by (5.16) and 

Theorems 3 and 4 we conclude that 

v (V) « v (V") = 2 . 
c- n'   en' 

These renarkB show that V (t) or perhaps -V (t) enjoy the properties to 

be established. That V (t) , rather than    -V (t) , has these properties is 

shown by observing that 

rio)  = c • I  (cos I)211"1 sin I f(T)dT ,  (c > 0)  , 

(obtained from (7) by differentiation) has a positive integrand and is there- 

fore positive. 

To establish the second inequality (5.15) or 

(5.18) vn(t) < f(t)    (0 < t <*)  , 

.; s-. 
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is a little more troublesome and we resort to Fejer's own method.  We consider 

the "roof-function" 

(5.19) f(t) = 

-t     if  0<t<a 
a —  — 

b -^   if a < t < n    (0 < a < jt, b > 0} , 
jt—a —     — 

and denote again by f(t) its odd periodic extension.  We now observe that 

indeed 

(5.20) vn(t) < f(t) , (0 < t < «) , 

for these special functions. Since we already know from our previous dis- 

cussion that V (t) is positive and concave in (Ojjr) , the inequality (5.20) 

is perfectly clear as soon as we can prove that 

(5.21) v;(0) < f'(0)  , V'U) > f'dr)  , 

These  inequalities,  however,   follow immediately from previous  rrmarks:     Since 

f(t)    is continuous,    V^t)    is the V-mean of    f'Ct)   .    Since 

f'CO) = sup f'Ct)     ,  f'(n) = inf f!(t)     . 

We conclude,  for instance from (5»2),  that 

- r       ' nuiiBw 
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f'(n) <V,(t)  < f'iO)      for all t . 

The proof of the general Inequality (5.id)  now follows from the observation 

that the function f(t) of Theorem 5 may be approximated by appropriate 

linear combinations of roof-functions with positive coefficients. 

6.  Convex, and star-shaped, conformal maps of the circle. The following 

introductory remark (previously made by one of usj see [10], pp. 226-227) 

applies to any variation diminishing kernel fl(t) as defined by the relations 

(3)^ (4) and (5) ot our Introduction. 

Let 

(6.1) f(t) = f^t) + if2(t)  (f^fg real-valued) 

be a complex-valued continuous function of period 2« and let 

(6.2) g(t).^ 

2jr 

fl(t-T)f(T)dT 

be its transform; g(t) is evidently also complex-valued periodic and we may 

write 

(6-3) g(t) ■ gi(t) + ig2(t)  , {g1,g2    real-valued) 

Since fl ia real and (3) holds It follows that the transforms of f,(t), 

f0(t) and 1 are g,(t), gp(t) and 1 , respectively. If A, B, C are 
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arbitrary reai constants it  follows  that    Ag.it) * Bgp(t)  + C    Is the  trans- 

form of    Af.U)  + Bf2(t}  ♦ C   .    Since    ß(L)     is assu-fled  to be a variation 

diminishing kernel,  we conclude by (5)  that  the inequality 

(6.4) vc(Ag1(t)+Bg2(t)+C  < vc(Af1(t)+Bf2(t)+C) 

always holds, 

The inequality (6.4) adMts a remarkable geometric interpretation.  Indeed, 

let us denote by {f}  the closed carve traced out by f(t) in the complex 

plane of the variable z = x+iy as t varies in the range [0,2n]   ,  and let 

{g) be the corresponding curve described by g(t) .  Let the following state- 

ment, too simple to be called a theorem, be referred to as a 

PRINCIPLE„ The curve (g)  never crosses a straight line more often than 

the curve  {f} does. 

For if Ax + By + C = 0 is the equation of a line L then the two mem- 

bers of the inequality (6A) are identical with the total numbers of crossings 

of L by {g) and  (f) , respectively.  In particular we have the 

COROLLARY k.     If the curve {f]  is convex then (g)  is interior to  (f) 

and {g}  is also convex. 

Indeed,  (f) being convex, it crosses any L at most twice, hence also 

{g]  crosses any L at most twice and is therefore convex. That (g) has no 

points outside of (f)  follows already from the properties 

(6.5) fl(t) > 0 , ^ 

fi2n 

ß(t)dt s 1 

i o 

. 
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and in no way requires the sophisticated condition that fl(t) be variation 

diminishing. On the other hand the conditions (6.5) are by themselves in- 

sufficient to enforce the convexity of (g) . It is also true; however, that 

the variation diminishing property of ß(t) Is sufficient but far from neces- 

sary for (g)  to be convex. As our example we mention the periodic kernel 

(6.6) fl(t) = 

n/h        If      -h < t < h 

If      -n<t<horh<t<jt        (0<h<jt)     , 

which Is readily shown to have the "convexity preserving" property of Corollary 

k.    However, (6.6) Is not variation diminishing because It Is not periodic 

totally positive (See [h]). 

We now turn to an application of these remarks to confomal maps of the 

circle, in particular to a proof of Theorem 2 of the Introduction. 

Let 

(6.7) 
2    3 

F(z) = z + c z + c z + ... 

be regular in the unit circle. For a fixed value of r we consider the 

complex-valued periodic function 

(6.8) f(t;r) = F(reit) = re11 + c0r
2e2it +  ...        (0 < r < 1) 

By (8) and (9) Its V-means are 
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Vn(t;r)  = ä 
2n 

u)n(t-T)F(rei'r)dT 

1     f/2Q x    it      /2n^      2 2it unit/ 
= piy )(n+l

)re       +  (n+2)c2r e        +   • • •  + V e       j 

or 

(6.9) Vn(t;r) = V^'re1*)     , 

where V (z) are the de ia Vallee Poussin means of the power series as defined 
—n 

by (15); with c, = 1 . We also record the more explicit expression 

//- -.^        ir i' ^   n      n(n-l)      2 n(n-l) ... 1     n 
-nx '  n+1    (n+l)(n+2) 2 (n+lj(n+2)...(2n) n 

Our Theorem 2 seems now almost self-evident. Indeed, if F(z) e K then 

the curve {V (re )) is convex by (6.8), (6.9) and Corollary 4. This being 

true for every r < 1 , we conclude that V (z) e K . Conversely, if V (z) e K 

for every n , then {V (re  )) is a convex curve for all n and all r < 1 . 

From the relation 

lim  Vn(re
:Lt) = F(rellj 

n -» 00 

we conclude that also {F(re" ))  is convex.  Hence F(z) e K 
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REMARK 1.  In order to conclude from (17) that F(z) e K It is not neces- 

sary to assume that the power series (6.7) converges in the unit circle or that 

it converges at all. Rather the converse part of Theorem 2 holds for a formal 

power series (6.7). For it is known (See e.g. [9],  vol. II, p. 29) that the 

assumptions (17) imply that all coefficients of the polynomial (6,10) are 

bounded in absolute value by n/(n+l) . Letting n -♦ 00 we obtain |c ( < 1 

(u= 1,2,... ) which clearly imply the convergence of (6.7) within the unit 

circle. 

REMARK 2. Let r(z) € K and hence V (z) e K . Let D and D denote 

the convex domains into which the unit circle is mapped by F(z) and V (z) , 

respectively. We know by Corollary 4 that 

(6.11) D C D 
n 

At this point it is natural to suspect that more is true, namely that all 

the inclusions 

(6.12) ^c  D2 C ... clDnC Dn+1C ... 

are valid, but we are unable to prove or disprove this. 

REMARK 3- Since numerous elements of the class K are explicitly known. 

Theorem 2 is a ready source of polynomials belonging to K . Thus 

(6.13) F(z) = J^-. z + z
2 + 



-J*8- 

is In    K    because it maps the unit circle onto the half-plane   Rz  > - ^ 

The corresponding V-means 

(6.1k) 
v n ' 

,2n ,2n s    2 n (n+l^ 2  + W Z    +   "•  +Z 

are a remarkable sequence of polynomials some extremal properties of vhlch 

might be discussed on another occasijn. Of course (6.11) holds. Here the 

convex boundary of D  touches the line Rz = - -^    to an order of contact 

vhlch Increases with n . Also the inclusions (6.12) can be verified in this 

special case. 

REMARK 4, Observe that "he image D  of the unit circle by V (z) = ^ z 

in the circle 

(6.15) M <| 

By (6.11) we have BCD    for every F(z) e K . This proves the following 

proposition: The circle (6.15) Is covered by every convex map D and (6.15) 

is the largest circle with this property. That D,  is the largest circle is 

shown by the special function (6.13). This theorem is due to Study, [11], 

p. 116, and our proof is really identical with Nehari's proof In [6], pp. 223-224, 

REMARK 5- A comparison of Theorem 2 with Feje'r's Theorem IV ([2], p. 8?) 

again shows the extent to which the de la Valiee Poussin means of a power series 

are superior to its third Cesaro means as far as shape-preserving properties 

are concerned. 
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REMARK 6. In Art. 3 we have seen that from a knowledge of the section 

(3.2) of the .Fourier ssrles (3.1) of f(t) we can infer the information 

(3.3) concerning the zeros of f(t) . Id there a similar result for power 

series? Specifically, let 

00 

'(z) =2_cu^   (co = 1) 

converge for     |z| < 1    and let,  for a certain value of    n ,  lbs V-mean 

n 

V    (z) = -i- V    ( 2n) c z^ -nv   '       /2nN '   yn+v      v 

(     ) v=o v n ' 

be given and known to have a certain number of zeros within the unit circle, 

Can we then draw any positive conclusion concerning the existence of zeros 

of f(z) in the unit circle? 

That the answer is negative is very simply shown as follows. With the 

given c « i^c >—,c  derive the expansion 

log(l + c.,z+  ...  +cz   )=bnz+  ...  +bz    +  ... ov 1 n    /        1 n 

But then 

b z +   ...  + b z 
F(z) = e « 1 + c, z +  ...  + c z    + .. 

^   ' In 

is a zero-free entire function whose n   V-mean is precisely the given 

■ 
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In concludiiiij this section we wish to point out similar appllcatioas 

concerning the class  £  of power series ZTb^z"  which map the unit circle 

onto a univalent domain which is star-shaped with respect to the origin.  It 

is well known that the two classes K and E   are related as follows: 

LEMMA 5.  S avz
ve £  if and only if 

1 

00 
t—  a 

— z^eK v 
1 

But then Theorem 2 easily implies the following 

COROLLARY 5» For 

F(a) e/_ 

it is necessary and sufficient that 

V ^ e A   ^2£   n := 1>2>-" 
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APPEVDIX r 

THE BERII3TEIJI POUfWOMIALS 

7-  The Bernstein construction Is variation diminishing.  The purpose of the 

present Appendix is to furnish for functions f(x)  defined In a finite inter- 

val a theory analogous to that given in Parts I and II for periodic functions. 

It is remarkable that such a theory is provided by the classical Bernstein poly- 

nomials. Indeed, let f(x) be defined In [0,1] and let 

n 

(7.1) Bn(x) = XI ttyi*)*'(l-x)a'* (n > 1) 
o 

be the corresponding Bernstein polynomial (See [5]). Let Z(B ) denote the 

number of zeros of B (x) in the open range (0,1) . We now state 

THEOREM 6. Denoting by v(f) the number of changes of sign of f(x) 

in [0,Jj we have the inequalities 

(7-2) Y(Bri) <Z(Bn) < v(f)  . 

This result, an analogue of Theorem 1, can be derived as a special case 

ITom a general theorem of S. Karlln [1], It admits, however, a very simple 

direct proof. Indeed, with z = x/(l-x) for 0 < x < 1 , we have 

BJx) 
Q \  wV\/']aN.,v 

(1-x)    v=0 

hence by Descartes' rule of signs 
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(l-x) /  (0,00)   o 

<y(f(J)) <v(f)  . 

8.  The graphic behavior of the Bernstein polynomials. If we write 

B(x)=B(x;f) to Indicate the dependence on f(x),itls clear that 

(8.1) B (x;Ax + B) = Ax + B . 

But then (7'l) implies that B (x) - Ax - B is the Bernstein polynomial of 

f(x) - Ax - B . Now (7.2) implies the 

COROLLARY 6, If Ax + B is an arbitrary linear function then 

(8.2) Z(Bri(x) - Ax - B) < v(f(x) - Ax - B)  . 

Intersecting the graphs of f(x) and B (x) by appropriate straight 

lines y = Ax + B , the inequality (8.2) furnishes a good deal of information 

concerning the shape of the graph of B (x) . Notice in particular the 

COROLLARY 7- If f(x) is convex in [0,1] , possibly discontinuous at the 

endpoints, but not linear in [0,1] , then 

1. B (x) is convex, 
n  

2. B (x) > f(x) if 0 < x < 1 , 

3-  Bn(0) = f(0) , Bn(l) = f(l)  . 
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We may omit the simple proof based an Corollary 6. 

Observe that the relation B'^-f) ■ B (x, f, Is not valid. However a nv nv  '     '   

simple calculation shows that  (7-1) Implies 

o 

and 

n-2 
B«(x) - n(n-l)  £-("?)£?fvx

v(l~xy 

where we have set 

fu - f(f)     (v- 0,...^) 

Af = f ,-f. , AV « f .-2f ,+f, v v+1 ^    ^   v+2  v+l i/ 

(See Natanson [5], p. 179, fifth line from the bottom). The Theorems 3^ 4 

and 5 have precise analogues as will now be shown with a minimum of details. 

The function classes D  and D  have analogues in the present situation 

and the numbers of sense-reversals and turn-reversals may again be defined by 

the relations 

S(f) «  lim   vCAfJ = sup v(Afy)       (f e D ) , 
n -♦ cc n 

T(f) =  lim   v(A2fi;)= sup v(A2f )      (f e D2) , 
n -» oo n      y 

respectively. 
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As In the periodic case we obtain 

THEOREM 7. If f(x) € D  then 

S(B ) = vCB') < S(f) v n/   v n' — v ' 

If f(x) € D0 then 

T(B ) = y(B')  < T(f)  . v n7   v n' - v 

If f(x) is odd about the point x = ^ , then B (x) is found to share 

this property. As an analogue of Theorem 5 we have 

THEOREM 8. If f(x) i_s odd about x = ^ , concave and non-negative in 

TT < x < 1 ,  positive in ^ < x < 1 , then also B (x) i^ concave in [^,1] 

and 

(8.3) 0 < Bn(x) < f ;x)  if I < x < 1 . 

Indeed, let us first observe the following:  Because of the invariance 

of linear functions expressed by (8.1), we may subtract from f(x) the 

linear function whose graph is the chord Joining the extreme points 

(0, f(0)) and (l, f(l)) , without altering the assumptions on f(x) , Thus 

without loss of generality we may assume that f(0) = f(l) = 0 . From this 

point the proof is entirely similar to the proof of Theorem 5 in all details, 

including the use of the roof-functions. Finally notice that the equality 
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is excluded in the second inequality (8.3). This is so because of the In- 

equality (8.2) of Corollary 6; in the periodic case we only had the weaker 

analogue (5•2). 



APPKSDIX  II 

A C0NJEC7VRE QW POWER SEUES MAPPIMG A CIRCLE 

ONTO A CONVEX DOMAIN 

9-  Sources and forms of the conjecture. As stated in the Introduction, a 

power series 

(9.1) a z + a0z    +  a z +..,+az +...=f(z) 

is said to belong to the class K , if it converges in the circle  )z| < 1 

and maps this circle onto a convex domain.  We say that the infinite sequence 

of complex numbers 

K^fKn/K*} •  • • \    ) • • 

is a convexity-preserving factor sequence if the series 

2 3 
^a^z + X.2a2z    + Na3Z    +  ''' 

necessarily belongs to K whenever (9.1) belongs to K . Let us apply such 

a factor sequence to the simplest power series belonging to K , to the geo- 

metric series 

2   3 z 
(9.2) Z + Z  +   Z      +    ...    - r  w  ' 1-z 

We obtain 



-57- 

JLZ + K^-    + X^z + ... + >^zn + . 

if \, .,\p A-.> • • • is a convexity-preserving factor sequence, the pover seri 

(9«2) must necessarily belong to K . We state the conjecture that this ob 

vious necessary condition is also sufficient; that is, we formulate 

CONJECTURE I. If both power series 

2     3 a z + a z + a z + ... 

es 

2     3 
b z + bpZ + ^o2 + •• 

belong to K , also 

2       ? 
a b z + a b z + a b z-^ + .. 

2/ 
belongs to K .—' 

2/ 
-'  One of the "Intuitive sources" of the conjecture is the feeling that 

(9.2) plays a "leading role" in K , that it "sets the fashion." Which one 

of the two authors of this paper is the author of the conjecture will be 

disclosed if and when the conjecture is proved. 
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In view of Lemma 5, the conjecture can be restated In other forms, 

equivalent to the first. 

CONJECTURE II.  If the power series 

2    3 
a z + a z + a zJ + ... 

belongs to K and 

2     3 
b z + b z + b z + 

belongs to £ , then 

2      3 
al>3lZ + a2b2z + a3b3Z + ' 

belongs to E , 

CONJECTURE III,  If both power series 

2     3 
a1 z + a z + a z + ... 

,2,3 
b,z + b0z + b z^ + ,.. 

belong to S , also 

albl   a2b2 2  a3b3 3 
-y- z + —g— z + -^y- z + 

belongs to T.  . 
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These three conjectures I, II and III are completely equivalent., they 

stand and fall together.  The third form brings out most clearly the relation 

to a conjecture that has been found, years ago and independently of each other, 

by two of our friends, Professor S. Mandelbrojt and Professor M. Schiffer, and 

which is published here with their permission: 

CONJECTURE MS.  If both power series 

2     3 a z + a z + a z + ... 

2     3 
b z + b z + b z + ... 

are "schlicht" in the unit circle, also 

aibl    a2b2 2  a3b3 
— z + —z + 3  

is "schlicht" in the unit circle. 

Whereas III is equivalent to Z  or II, it appears logically independent 

of MS: As far as obvious conclusions from the statements go. III could be 

true but MS false, or MS true yet III false, or both could be true or both 

false. Still, the conjectures are obviously related and their Joint consid- 

eration may lead to various suggestions. 

The conjectures I, II and III are more "elementary" than MS and they 

are certainly more accessible; we succeeded in treating several of their par- 

ticular cases and consequences. 
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10. Verification of the conjecture in some particular cases. We shaaJ. exhibit 

several particular series 2 b z  belonging to K which, convoluted with an 

arbitrary series (9-1) belonging to K , generate a series E a b z  belong- 

ing to K . 

(a) The polynomial (6.14) belongs to K . That its convolution with an 

arbitrary series belonging to K necessarily belongs to K is precisely what 

Theorem 2 asserts. 

(b) If the series (9.1) belongs to K , it belongs, a fortiori, to E  . 

Therefore, by Lemma 5, the series 

2    3 
a z  a z   a z-' 

T « • • 

belongs to K . This is another special case of conjecture Ij that the series 

2   3 z  z   z-1       .1 
I + T + T+ ... =log — 

maps the unit circle onto a convex domain follows from its relation to (9.2) 

and from Lemma 5 but this fact can also be established directly (See [9], 

vol. 1, p. 106, problem 114), 

(c) The result mentioned under (a) (Theorem 2) is due to the fact that 

the V-means are variation-diminishing; cf. Art. 6. Any variation-diminishing 

transformation on the circle leads to an analogous result, and so we obtain 
2 

—'y z 
especially the following (cf. [k]):     Let g(z) be the product of e '   , 

where 7 > 0 , with an entire function of genus 1, all coefficients and all 

zeros of which are real: then 
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oo 
\—   n 

/
1 öfi^y 

belongs to K , and, provided that (9«l) belongs to K ,  also 

1 
oo    n — a z 

n 

belongs to K . The term "entire function of genus l" is used here In the 

conrprehenslve sense, that Is, It Is supposed to Include also entire functions 

of genus 0 and polynomials (but, obviously, not the Identically vanishing 

polynomial); the case in which g(z) reduces to z was mentioned under (b). 

(d) Let p and g denote two different given points on the unit circle 

( |p| = |g| « 1| P 5^ g) • Assume that (9.1) belongs to K and let z des- 

cribe a circle concentric with, and interior to, the unit circle. Then f(z) 

describes a convex curve of which f(pz) - f(gz) represents a moving chord; 

as it is easy to see geometrically this chord turns all the time in the same 

sense: The arcus of the complex number f(pz) - f(gz) Increases steadily. 

That is, the power series 

f(Pz) - tiS£l  .r a  Pn-gn zn 
p-g      —Y n   p-g 

belongs to S (maps the unit circle onto a star-shaped domain) and so, by 

Lemma 5, the power series 
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oo 
i 

n   p-g 

r- a   n   n 
/ JH   P-g  ,,n 

n=l 

belongs io    K    (cf. [6]).  The series (10.1) is the convolution of (9.1) and 

of that particular case of (10.l) in which a = 1 ; this particular series 

maps  (z| < 1 onto an infinite strip bounded by two parallels. 

11.  Verification of some consequences. In the foregoing, we have dealt mainly 

with form I of the conjecture, but now we shall consider its form III.  We 

assume, therefore, that the function (9-1) belongs to the class S , that is, 

it maps the circle  |z| < 1 onto a star-shaped domain. We shall say that 

(9'l) is normalized if 

(11.1) a = 1  . 

(a) We are given an integer n , n > 2 . Let us consider the normal- 

ized functions of the clabb Z and let us seek one for which  la t  is a maxi- 1 n ' 

mum. We leave aside the (easy) discussion of the existence and assume that 

(9-1) is such a function with maximum  |a | . Now we apply conjecture III 

with b = a  for m = 1,2,3,... '>   the resulting series is again normalized mm ' 0 

4" Vn 

and so its n   coefficient cannot have an absolute value exceeding the maxi- 

mum; that is, 

|a |2 

  <  a   , n   —  ' n'  ' 

from which it follows that 
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a  < n  . 1 n' — 

For series of the class E   this inequality is well known and easily estab- 

lished independently of the conjecture III, And so our previous reasoning 

served only to enhance somewhat the plausiuility of conjecture III. Yet the 

same reasoning is also applicable to the conjecture MS and reveals one of the 

essential sources of this conjecture. 

(b) The function f(z) belongs to the class S if, and only if, 

(11.2) Hrffi  = 1 + 2aiz  + 2a2z2 + 2a3z3 + *" 

is regular in the circle  (z( < 1 and has there a positive real part.  This 

will be the case if, and only if, the Hermitian for.ii of the variables 

o' 1'  ' n 

n   n 

k^o A=o 

(a-v = 5^ , by definition) is positive 'definite or semidefinite) for 

n = 1,2,3*•••  • This well known important necessary and sufficient condi- 

tion is due to Caratheodory and Toeplitz. It can also be expressed in terms 

of the determinants 
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(11.4) A = —n 

1 

a 

a 

a 

-1 

-n 

1 

a 

~2 

1 

■ 

a 
-n+1   -n+2 

a 

a 
n-1 

a 
n-2 

Now, see {y.l),  the relation (11.2) can be written in the form 

(11.5) 
2    3 a1 z + a z + a z + 

2a z  2a z  2a z5 

—T— + —s— + —I— + • 
a ze 

or in the form 

11.6) 

2      1 2a z  2a-z   2anz
J 

——■ + —-— + —^— + 

eigZ  a z 
= log(l +   + ~— + ... ) a1    a1 

and so we can express both a /a  as a polynomial in the a and a  as a 

polynomial in the a/a : 

a 
2 — = 2a, 

(11.7) 
(2a1) + 2a2 

O I 

{2aiy  + 2(2a3) + 3(2a1)(2a2) 
_ 
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a2 

a - 2a a 
(11.8)        23 « - -l—^A, i 

al 

a^ - 3a1a2a3 > 3^ 

3=        ai3 

It would be easy to write down (11.7^ or (11.8) for general n , but we shall 

not enter into details. Using (11.8) we could express the Hemltlan form 

(11.3) and the determinaat (11.4) in terms of the coefficients of the series 

(9.1) and doing so we would render more explicit the necessary and sufficient 

condition for the class £ . Yet we postpone this consideration. 

(c) Now consider, besides (9.1), two other power series with coefficients 

b  and c  respectively, and let ß  and B  be so linked to the b , and 
n      n D     -n ' 

7      and C  so linked to the c , as a  and A  are to the a . Thus we 
n     —n n      n 

have besides (11.5) (in all summations n * 1,2,3,... ) 

ß n n 

(11.9)    Y bnz
n = b1z exp(2^-^-), ^T cnZ

n = ^z exp(2^ -£—)  . 

Set 

a b 
(11.10) —^= c v n    n 

Now express a
n/a1  in terms of the a from (11-7), and express analogously 
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b /b.  In tenns of the ß , then c /c.  in terma of the a and ß from 

(11.10) and finally from relations analogous to (11.8), express y      in terms 

of the c/c  and so in terms of the a and ß .  This leads to 

h  = aißl 

372  =  Ü2ß2   + 2a?ßl 

(11.11) +2a% -    2crß^ 

673 =  a3ß3   + 3o:3ß1ß2   + 2a^3 

+3a1a2ß3 + 3a1Q;2ß1ß2 - ^c^ß3 

+2c^ß3   - 6Qiß1ß2   
+ ^^1 

Not all details of the general formula for 7      are obvious; a few features 

will be discussed under (e). The determinant C  (expressed in terms of the 

7 as A  is in terms of the a , cf.  (11.4)) becomes by virtue of (11.11) 

a polynomial in the a, a, ß and ß . By the theory of Caratheodory and 

Toeplitz, conjecture III is equivalent to 

CONJECTURE IV. The 2n inequalities 

^ > 0, A2 > 0,...,An > 0 , 

B.. > 0. B0 > 0.....B > 0  , —1   ' —2   '   '—n 
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imply the n Inequalities 

C. > 0, C- > 0,...,C > 0 —1     —2       '—n 

and this holds for n « l/2>3>*• • 

This formulation excludes the case of equality in all the 3n inequali- 

ties considered. This is due to the fact that, without loss of generality, we 

may suppose Sa z  and 2b z  regular in |z( < 1 . 

(d) The case n = 1 of conjecture IV is trivial. In fact, if we assume 

that the series are normalized, see (11.1), and introduce the coefficients of 

the mappiii^ functions, see (11.8), the statement that we have to prove reduces 

to this: 

The inequalities        [ap| < 2, |bp| <2 

imply 
a2b2 

2 

< 2 

which is obvious. 

(e) The case a = 2 of conjecture IV was first established by Dr. G. A. 

Hummel and can be proved as follows. 

We take the serLes as normalized, see (ll.l), and set 

a2 = a , a^ = A , b2 = b , b3 = B ; 

we suppose, wlthovvt loss of generality, that a > 0, b > 0 . We have to show: 

The two inequalities 
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(11.12) A - 3a < 1 - T B-^l        > 
b 
T 

imply 

(11.13) 
AB  3a2b£ !     a 
T " -T£~ r1' IF 

2b2 

(The first Inequality (11.12) results from the condition A    > 0 ,  see (11.4), 

by virtue of (ll.8)j it implies a < 2 , and so the condition A^ > 0 .) 

Let 

(11.14) A=3^ + u^ B=3b: + V 

By the hypothesis (11.12) of the theorem that we are about to prove 

(11.15) M<I-T-'   I X ^ lvl <1 - T 

We derive from (11.14) and (11.15) 

(11.16) 

AB = 

AB - 

^22   _ 2     , i 
9a b   3a     0b 

u + uv 

9a 
1^ 

h2 
<-ir (1 V)^u Tj-) + (1 - -ip)(l - TJ- 

2 V.2 

;;' )(1 - V) 

We assert that 

(11.1?) 
a   b   5a b   . -      3a^b' 1 + ~ + ~ - —IF~ < 3 ■ ^r~ 
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in fact, this follows from & < 2, h < 2,  since it is equivalent to 

(1 .^)(1 -\-) >0 

The right hand side of (11.16) is equal to the left hand side of (11.17), and 

so the combination of these two inequalities immediately yields the desired 

conclusion (11.13). 

(e) We consider now the expression of   7      in terms of the a and ß 

for general n ; for the cases n = 1,2,3,    see(ll.ll). The procedure that 

led us to (11.11) shows that y      is a polynomial in OL,a?,...,a , ß ,ß-,. 

ß  with rational coefficients. ObvioufLy, by virtue of (11.10), 7  is 

symmetric in the a    and ß . If we substitute pz for z in (11.5) or, 

which is the same, we change a  into p a  and a  into p a , there re- ' 0n n      n a ' 

suits a change, see again (11.10), of c  into p c  and of 7  into p y    ', 

therefore, y      must be an isobarlc polynomial in the a of weight n . 

Finally, y      must be of the form 

(n) 
(lla8) ^tx^"^ 

where 

p = p(n) is the number of partitions of the integer n , 

A1,A ,...,A  are the products of powers of weight n of a ,a^,...;a , 

ordered lexicographically so that 

(11.19) A^ V A^O^,... A =aj 
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Gcnemlly   A^    Is of the foro 

(11.20) 
klk2 

Akmai'a2' '"aa 

its weight    Ik.   + 2k_ + 3kn  +  ...  + nk   = n . 1 2      J 3 n 

B ,B0,-,.,B      are analogouslj expressed in terms of   ß ,ß ,...fß    , and 

jj^  are rational numbers, j|^ = j^  • 

For example 

P(4) = 5 

and, for n - 4 

\ = av A2 = a^, A5 = a2
2,  A4 = a^, A5 = a> , 

m 
the B are analogously defined and the matrix of the j../ results from 

X K 

9 24 9 36 12 

24 24 24 -24 -48 

9 24 -1 -4 -28 

36 -24 -4 -136 128 

12 -48 -28 128 -64 

if each of the 25 numbers displayed is divided by 90 . 

We cannot exhibit the law of the dependence of J. ,  on n in some ob- 
1 K. 

viously useful manner, but we note here one property. If 
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^n"1 

it is easUy seen from (11.9) that 

Vbl •n 

and,  therefore, by (11.10) 

Cn/ Cl * an/ai 

and so finally 

7„ = a n        n 

for any chdce of the    ^ ;  this muSt he cc^atihle with (U.18)  and so, 

B1 = B2 =   ... = Bp = 1  ,  by our choice of the    ß  , 

f-       (n) fl    for    k=l 

i=l     Jk^ [0    for    k- 2,3,..., P 

if)    Thesyste^of    a    ecple. „«hers    (a,^,. ...cj   , for ^^ we 

shau also use the »ore concise notation    (a)  ,  detemlnes a point In 

2n-dlmenslonal Euclidean space.    A point    (a)    helongs  to the coemclent- 

äSSSln If, and only If,   u co-responds hy virtue of (11.5)  t0 the tnltlal 

teras of a power series of the class    Z .    Vhe «st re.ar.able honndary 
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polnt of the coefficient donaln is the "Koebe-point" which corresponds to the 

function 

2    3 
z + 22 + 3zJ + ... = z(l-z) 

_o 

Our aim is to show that, for any given n ,  conjecture IV is true for two inter- 

ior points of the coefficient domain which are both sufficiently close to the 

Koebe-point. 

Let us choose two arbitrary points (u) and (v) in the interior or 

the coefficient domain. That is, cf. under (b), both Hermltian forms 

(11.22) "\  „  ^ 7 .     ^ Z_Z_ ViVi'  L_L\~£\zt 

are positive definite. Let a, ß and e denote positive numbers; a    and 

ß  are arbitrary and e so smalx that a€ < 1, ße < 1 . The coefficient 

domain :'.s convex. Therefore, if we set 

(11.23)      a, = (1-ea) + ecm^  , ßJ = (1-eß) + eßv^ 

for v = 0, + 1, + 2,...,+ n , the points (a) and (ß) are in the interior 

of the coefficient domain.  If A^ is given by (11.20) 

^ = 1 + ea ^ + 0(e2) 

where 
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^ = ^(V^-I) ♦ k2(Vl) ^ ... 4 JCn(un-l; 

2 o 
and 0(" ) denotes a quantity of order not exceeding €  when e tends to 

0 . There is a similar expression for B. and finally, by (11.21), 

(11.24) r°-sSj"Vi 

p p 

fc=i ibi ^^      k     * 

= 1 + ecril   + eßv   + 0(e) 

1 + ea(u -1) + 6ß(v -1) + 0(0 

By virtue of (11.24) 

V 
k-i k  i 

= (1-ea - eß) Iz    + z,   + ... + z   I' v K/' o        1 n1 

+ ea ViV/ 

+ e^   )   ^^Vi ^(O 



•Ik. 

«md  tM. He^itian  for.  U  defl„Ue positive  ft,, .ufflcl.ntl,  «U     .   ,   slnce 

the ro«  (U.22, are definite positive,     wuh this,  we have proved another 

infinitesimal part of conjecture IV. 
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